Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 20(3): e1012060, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38442126

RESUMO

The recent discovery of Hepatitis D (HDV)-like viruses across a wide range of taxa led to the establishment of the Kolmioviridae family. Recent studies suggest that kolmiovirids can be satellites of viruses other than Hepatitis B virus (HBV), challenging the strict HBV/HDV-association dogma. Studying whether kolmiovirids are able to replicate in any animal cell they enter is essential to assess their zoonotic potential. Here, we compared replication of three kolmiovirids: HDV, rodent (RDeV) and snake (SDeV) deltavirus in vitro and in vivo. We show that SDeV has the narrowest and RDeV the broadest host cell range. High resolution imaging of cells persistently replicating these viruses revealed nuclear viral hubs with a peculiar RNA-protein organization. Finally, in vivo hydrodynamic delivery of viral replicons showed that both HDV and RDeV, but not SDeV, efficiently replicate in mouse liver, forming massive nuclear viral hubs. Our comparative analysis lays the foundation for the discovery of specific host factors controlling Kolmioviridae host-shifting.


Assuntos
Hepatite D , Vírus Delta da Hepatite , Camundongos , Animais , Humanos , Roedores , Vírus da Hepatite B/genética , Serpentes , Replicação Viral , RNA Viral/genética
2.
Antiviral Res ; 223: 105813, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38272320

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic has heavily challenged the global healthcare system. Despite the vaccination programs, the new virus variants are circulating. Further research is required for understanding of the biology of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and for discovery of therapeutic agents against the virus. Here, we took advantage of drug repurposing to identify if existing drugs could inhibit SARS-CoV-2 infection. We established an open high throughput platform for in vitro screening of drugs against SARS-CoV-2 infection. We screened ∼1000 drugs for their ability to inhibit SARS-CoV-2-induced cell death in the African green monkey kidney cell line (Vero-E6), analyzed how the hit compounds affect the viral N (nucleocapsid) protein expression in human cell lines using high-content microscopic imaging and analysis, determined the hit drug targets in silico, and assessed their ability to cause phospholipidosis, which can interfere with the viral replication. Duvelisib was found by in silico interaction assay as a potential drug targeting virus-host protein interactions. The predicted interaction between PARP1 and S protein, affected by Duvelisib, was further validated by immunoprecipitation. Our results represent a rapidly applicable platform for drug repurposing and evaluation of the new emerging viruses' responses to the drugs. Further in silico studies help us to discover the druggable host pathways involved in the infectious cycle of SARS-CoV-2.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Animais , Chlorocebus aethiops , Reposicionamento de Medicamentos , Bioensaio , Morte Celular , Proteínas do Nucleocapsídeo
3.
Microbiol Spectr ; 10(4): e0158522, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35862992

RESUMO

Mammarenaviruses establish a persistent infection in their rodent and bat hosts, and the evidence suggests that reptarenaviruses and hartmaniviruses found in captive snakes act similarly. In snakes, reptarenaviruses cause boid inclusion body disease (BIBD), which is often associated with secondary infections. Snakes with BIBD usually carry more than a single pair of reptarenavirus S and L segments and occasionally demonstrate hartmanivirus coinfection. Here, we reported the generation of cell lines persistently infected with a single or two reptarenavirus(es) and a cell line with persistent reptarenavirus-hartmanivirus coinfection. By RT-PCR we demonstrated that the amount of viral RNA within the persistently infected cells remains at levels similar to those observed following initial infection. Using antibodies against the glycoproteins (GPs) and nucleoprotein (NP) of reptarenaviruses, we studied the levels of viral protein in cells passaged 10 times after the original inoculation and observed that the expression of GPs declines dramatically during persistent infection, unlike the expression of NP. Immunofluorescence (IF) staining served to demonstrate differences in the distribution of NP within the persistently infected compared to freshly infected cells. IF staining of cells inoculated with the viruses secreted from the persistently infected cell lines produced similar NP staining compared to cells infected with a traditionally passaged virus, suggesting that the altered NP expression pattern of persistently infected cells does not relate to changes in the virus. The cell cultures described herein can serve as tools for studying the coinfection and superinfection interplay between reptarenaviruses and studying the BIBD pathogenesis mechanisms. IMPORTANCE Mammarenaviruses cause a persistent infection in their natural rodent and bat hosts. Reptarenaviruses cause boid inclusion body disease (BIBD) in constrictor snakes, but it is unclear whether snakes are the natural host of these viruses. In this study, we showed that reptarenaviruses established a persistent infection in cultured Boa constrictor cells and that the persistently infected cells continued to produce infectious virus. Our results showed that persistent infection results from subsequent passaging of cells inoculated with a single reptarenavirus, two reptarenaviruses, or even when inoculating the cells with reptarenavirus and hartmanivirus (another arenavirus genus). The results further suggested that coinfection would not result in overt competition between the different reptarenaviruses, thus helping to explain the frequent reptarenavirus coinfections in snakes with BIBD. The established cell culture models of persistent infection could help to elucidate the role of coinfection and superinfection and potential immunosuppression as the pathogenic mechanisms behind BIBD.


Assuntos
Arenaviridae , Boidae , Quirópteros , Coinfecção , Superinfecção , Animais , Arenaviridae/genética , Linhagem Celular
4.
Viruses ; 14(1)2022 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-35062311

RESUMO

Human hepatitis D virus (HDV) depends on hepatitis B virus co-infection and its glycoproteins for infectious particle formation. HDV was the sole known deltavirus for decades and believed to be a human-only pathogen. However, since 2018, several groups reported finding HDV-like agents from various hosts but without co-infecting hepadnaviruses. In vitro systems enabling helper virus-independent replication are key for studying the newly discovered deltaviruses. Others and we have successfully used constructs containing multimers of the deltavirus genome for the replication of various deltaviruses via transfection in cell culture. Here, we report the establishment of deltavirus infectious clones with 1.2× genome inserts bearing two copies of the genomic and antigenomic ribozymes. We used Swiss snake colony virus 1 as the model to compare the ability of the previously reported "2× genome" and the "1.2× genome" infectious clones to initiate replication in cell culture. Using immunofluorescence, qRT-PCR, immuno- and northern blotting, we found the 2× and 1.2× genome clones to similarly initiate deltavirus replication in vitro and both induced a persistent infection of snake cells. The 1.2× genome constructs enable easier introduction of modifications required for studying deltavirus replication and cellular interactions.


Assuntos
Boidae/virologia , Células Clonais , Coinfecção/genética , Vírus Delta da Hepatite/genética , Replicação Viral , Animais , Boidae/genética , Genoma Viral , Vírus Auxiliares/genética , Hepadnaviridae/genética , Hepatite B/genética , Vírus da Hepatite B/genética , Hepatite D/virologia , RNA Catalítico , RNA Viral/genética , Transfecção
5.
mBio ; 12(3)2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-34006662

RESUMO

The ongoing coronavirus disease 2019 (COVID-19) pandemic has seen an unprecedented increase in the demand for rapid and reliable diagnostic tools, leaving many laboratories scrambling for resources. We present a fast and simple assay principle for antigen detection and demonstrate its functionality by detecting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antigens in nasopharyngeal swabs. The method is based on the detection of SARS-CoV-2 nucleoprotein (NP) and S protein (SP) via time-resolved Förster resonance energy transfer (TR-FRET) with donor- and acceptor-labeled polyclonal anti-NP and -SP antibodies. Using recombinant proteins and cell culture-grown SARS-CoV-2, the limits of detection were established as 25 pg of NP or 20 infectious units (IU) and 875 pg of SP or 625 IU. Testing reverse transcription-PCR (RT-PCR)-positive (n = 48, with cycle threshold [CT ] values from 11 to 30) or -negative (n = 96) nasopharyngeal swabs demonstrated that the assay yielded positive results for all samples with CT values of <25 and for a single RT-PCR-negative sample. Virus isolation from the RT-PCR-positive nasopharyngeal swabs showed a strong association between the presence of infectious virus and a positive antigen test result. The NP-based assay showed 97.4% (37/38) sensitivity and 100% (10/10) specificity in comparison with virus isolation and 77.1% (37/48) sensitivity and 99.0% (95/96) specificity in comparison with SARS-CoV-2 RT-PCR. The assay is performed in a buffer that neutralizes SARS-CoV-2 infectivity, and the assay is relatively simple to set up as an "in-house" test. Here, SARS-CoV-2 served as the model pathogen, but the assay principle is applicable to other viral infections, and the test format could easily be adapted to high-throughput testing.IMPORTANCE PCR is currently the gold standard for the diagnosis of many acute infections. While PCR and its variants are highly sensitive and specific, the time from sampling to results is measured in hours at best. Antigen tests directly detect parts of the infectious agent, which may enable faster diagnosis but often at lower sensitivity and specificity. Here, we describe a technique for rapid antigen detection and demonstrate the test format's potential using SARS-CoV-2 as the model pathogen. The 10-min test, performed in a buffer that readily inactivates SARS-CoV-2, from nasopharyngeal samples identified 97.4% (37/38) of the samples from which we could isolate the virus. This suggests that the test performs well in identifying patients potentially shedding the virus. Although SARS-CoV-2 served as the model pathogen to demonstrate proof of concept, the test principle itself would be applicable to a wide variety of infectious and perhaps also noninfectious diseases.


Assuntos
Antígenos Virais/análise , Teste Sorológico para COVID-19/métodos , Transferência Ressonante de Energia de Fluorescência , SARS-CoV-2/isolamento & purificação , Antígenos Virais/imunologia , COVID-19/diagnóstico , COVID-19/virologia , Proteínas do Nucleocapsídeo de Coronavírus/análise , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , Humanos , Limite de Detecção , Nasofaringe/virologia , Fosfoproteínas/análise , Fosfoproteínas/imunologia , Estudo de Prova de Conceito , Proteínas Recombinantes/imunologia , SARS-CoV-2/imunologia , Sensibilidade e Especificidade , Glicoproteína da Espícula de Coronavírus/análise , Glicoproteína da Espícula de Coronavírus/imunologia , Fatores de Tempo
6.
Science ; 370(6518): 856-860, 2020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-33082293

RESUMO

The causative agent of coronavirus disease 2019 (COVID-19) is the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). For many viruses, tissue tropism is determined by the availability of virus receptors and entry cofactors on the surface of host cells. In this study, we found that neuropilin-1 (NRP1), known to bind furin-cleaved substrates, significantly potentiates SARS-CoV-2 infectivity, an effect blocked by a monoclonal blocking antibody against NRP1. A SARS-CoV-2 mutant with an altered furin cleavage site did not depend on NRP1 for infectivity. Pathological analysis of olfactory epithelium obtained from human COVID-19 autopsies revealed that SARS-CoV-2 infected NRP1-positive cells facing the nasal cavity. Our data provide insight into SARS-CoV-2 cell infectivity and define a potential target for antiviral intervention.


Assuntos
Betacoronavirus/fisiologia , Infecções por Coronavirus/virologia , Neuropilina-1/metabolismo , Pneumonia Viral/virologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Internalização do Vírus , Enzima de Conversão de Angiotensina 2 , Animais , Anticorpos Monoclonais/imunologia , Betacoronavirus/genética , COVID-19 , Células CACO-2 , Feminino , Células HEK293 , Interações entre Hospedeiro e Microrganismos , Humanos , Pulmão/metabolismo , Masculino , Nanopartículas Metálicas , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Neuropilina-1/química , Neuropilina-1/genética , Neuropilina-1/imunologia , Neuropilina-2/metabolismo , Mucosa Olfatória/metabolismo , Mucosa Olfatória/virologia , Pandemias , Fragmentos de Peptídeos/metabolismo , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , Ligação Proteica , Domínios Proteicos , Mucosa Respiratória/metabolismo , SARS-CoV-2 , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Glicoproteína da Espícula de Coronavírus/química
7.
Viruses ; 12(4)2020 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-32252443

RESUMO

Reptarenaviruses cause Boid Inclusion Body Disease (BIBD), and co-infections by several reptarenaviruses are common in affected snakes. Reptarenaviruses have only been found in captive snakes, and their reservoir hosts remain unknown. In affected animals, reptarenaviruses appear to replicate in most cell types, but their complete host range, as well as tissue and cell tropism are unknown. As with other enveloped viruses, the glycoproteins (GPs) present on the virion's surface mediate reptarenavirus cell entry, and therefore, the GPs play a critical role in the virus cell and tissue tropism. Herein, we employed single cycle replication, GP deficient, recombinant vesicular stomatitis virus (VSV) expressing the enhanced green fluorescent protein (scrVSV∆G-eGFP) pseudotyped with different reptarenavirus GPs to study the virus cell tropism. We found that scrVSV∆G-eGFPs pseudotyped with reptarenavirus GPs readily entered mammalian cell lines, and some mammalian cell lines exhibited higher, compared to snake cell lines, susceptibility to reptarenavirus GP-mediated infection. Mammarenavirus GPs used as controls also mediated efficient entry into several snake cell lines. Our results confirm an important role of the virus surface GP in reptarenavirus cell tropism and that mamma-and reptarenaviruses exhibit high cross-species transmission potential.


Assuntos
Arenaviridae/fisiologia , Vesiculovirus/fisiologia , Proteínas do Envelope Viral , Tropismo Viral , Células A549 , Animais , Arenaviridae/genética , Linhagem Celular , Chlorocebus aethiops , Proteínas de Fluorescência Verde/genética , Células HEK293 , Humanos , Serpentes , Células Vero , Vesiculovirus/genética , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo
8.
Infect Genet Evol ; 83: 104321, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32302697

RESUMO

Bearded dragon adenovirus 1 (BDAdV-1), also known as agamid adenovirus 1, has been described worldwide as a prevalent infectious agent of the inland bearded dragon (Pogona vitticeps), the most common squamate exotic pet reptile. Previous limited sequence data of the adenoviral DNA polymerase and hexon genes indicated that BDAdV-1 is a member of genus Atadenovirus family Adenoviridae. Atadenoviruses infect ruminants, marsupials, testudine reptiles and birds, yet the genus has been shown to be of squamate reptile origin. Here, we report a screening survey along with the complete genome sequence of BDAdV-1, derived directly from the sample of a deceased juvenile dragon showing central nervous system signs prior to passing. The BDAdV-1 genome is 35,276 bp and contains 32 putative genes. Its genome organization is characteristic of the members of genus Atadenovirus, however, a divergent LH3 gene indicates structural interactions of different nature compared to other genus members such as snake adenovirus 1. We identified five novel open reading frames (ORFs), three of which encode proteins of the C-type lectin-like domain (CTLD) superfamily. ORF3 has a CTLD group II-like domain architecture displaying structural similarity with natural killer cell surface receptors and with an alphaherpesviral virulence factor gene for neurotropism, UL45. ORF4 and 6 are extremely long compared to typical adenoviral right-end genes and possibly encode members of the CTLD superfamily with novel, previously undescribed domain architectures. BDAdV-1 is the hitherto most divergent member of genus Atadenovirus providing new insights on adenoviral diversity, evolution and pathogenesis.


Assuntos
Adenoviridae/genética , Genoma Viral , Lagartos/virologia , Proteínas Virais/química , Adenoviridae/isolamento & purificação , Animais , Lectinas Tipo C/química , Filogenia , Domínios Proteicos , Proteínas Virais/genética
9.
J Virol ; 94(11)2020 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-32238580

RESUMO

Boid inclusion body disease (BIBD) is a transmissible viral disease of captive snakes that causes severe losses in snake collections worldwide. It is caused by reptarenavirus infection, which can persist over several years without overt signs but is generally associated with the eventual death of the affected snakes. Thus far, reports have confirmed the existence of reptarenaviruses in captive snakes in North America, Europe, Asia, and Australia, but there is no evidence that it also occurs in wild snakes. BIBD affects boa species within the subfamily Boinae and pythons in the family Pythonidae, the habitats of which do not naturally overlap. Here, we studied Brazilian captive snakes with BIBD using a metatranscriptomic approach, and we report the identification of novel reptarenaviruses, hartmaniviruses, and a new species in the family Chuviridae The reptarenavirus L segments identified are divergent enough to represent six novel species, while we found only a single novel reptarenavirus S segment. Until now, hartmaniviruses had been identified only in European captive boas with BIBD, and the present results increase the number of known hartmaniviruses from four to six. The newly identified chuvirus showed 38.4%, 40.9%, and 48.1% amino acid identity to the nucleoprotein, glycoprotein, and RNA-dependent RNA polymerase, respectively, of its closest relative, Guangdong red-banded snake chuvirus-like virus. Although we cannot rule out the possibility that the found viruses originated from imported snakes, the results suggest that the viruses could circulate in indigenous snake populations.IMPORTANCE Boid inclusion body disease (BIBD), caused by reptarenavirus infection, affects captive snake populations worldwide, but the reservoir hosts of reptarenaviruses remain unknown. Here, we report the identification of novel reptarenaviruses, hartmaniviruses, and a chuvirus in captive Brazilian boas with BIBD. Three of the four snakes studied showed coinfection with all three viruses, and one of the snakes harbored three novel reptarenavirus L segments and one novel S segment. The samples originated from collections with Brazilian indigenous snakes only, which could indicate that these viruses circulate in wild snakes. The findings could further indicate that boid snakes are the natural reservoir of reptarena- and hartmaniviruses commonly found in captive snakes. The snakes infected with the novel chuvirus all suffered from BIBD; it is therefore not possible to comment on its potential pathogenicity and contribution to the observed changes in the present case material.


Assuntos
Arenaviridae , Boidae/virologia , Proteínas Virais , Animais , Arenaviridae/classificação , Arenaviridae/genética , Arenaviridae/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo
10.
mBio ; 11(2)2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32184255

RESUMO

Satellite viruses, most commonly found in plants, rely on helper viruses to complete their replication cycle. The only known example of a human satellite virus is the hepatitis D virus (HDV), and it is generally thought to require hepatitis B virus (HBV) to form infectious particles. Until 2018, HDV was the sole representative of the genus Deltavirus and was thought to have evolved in humans, the only known HDV host. The subsequent identification of HDV-like agents in birds, snakes, fish, amphibians, and invertebrates indicated that the evolutionary history of deltaviruses is likely much longer than previously hypothesized. Interestingly, none of the HDV-like agents were found in coinfection with an HBV-like agent, suggesting that these viruses use different helper virus(es). Here we show, using snake deltavirus (SDeV), that HBV and hepadnaviruses represent only one example of helper viruses for deltaviruses. We cloned the SDeV genome into a mammalian expression plasmid, and by transfection could initiate SDeV replication in cultured snake and mammalian cell lines. By superinfecting persistently SDeV-infected cells with reptarenaviruses and hartmaniviruses, or by transfecting their surface proteins, we could induce production of infectious SDeV particles. Our findings indicate that deltaviruses can likely use a multitude of helper viruses or even viral glycoproteins to form infectious particles. This suggests that persistent infections, such as those caused by arenaviruses and orthohantaviruses used in this study, and recurrent infections would be beneficial for the spread of deltaviruses. It seems plausible that further human or animal disease associations with deltavirus infections will be identified in the future.IMPORTANCE Deltaviruses need a coinfecting enveloped virus to produce infectious particles necessary for transmission to a new host. Hepatitis D virus (HDV), the only known deltavirus until 2018, has been found only in humans, and its coinfection with hepatitis B virus (HBV) is linked with fulminant hepatitis. The recent discovery of deltaviruses without a coinfecting HBV-like agent in several different taxa suggested that deltaviruses could employ coinfection by other enveloped viruses to complete their life cycle. In this report, we show that snake deltavirus (SDeV) efficiently utilizes coinfecting reptarena- and hartmaniviruses to form infectious particles. Furthermore, we demonstrate that cells expressing the envelope proteins of arenaviruses and orthohantaviruses produce infectious SDeV particles. As the envelope proteins are responsible for binding and infecting new host cells, our findings indicate that deltaviruses are likely not restricted in their tissue tropism, implying that they could be linked to animal or human diseases other than hepatitis.


Assuntos
Vírus Delta da Hepatite/genética , Vírus Delta da Hepatite/patogenicidade , Serpentes/virologia , Proteínas do Envelope Viral/genética , Animais , Linhagem Celular Tumoral , Coinfecção/virologia , Genoma Viral , Vírus Auxiliares/genética , Vírus da Hepatite B/genética , Vírus Delta da Hepatite/classificação , Humanos , RNA Viral/genética , Tropismo Viral , Replicação Viral
11.
mBio ; 10(2)2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30940697

RESUMO

Hepatitis D virus (HDV) forms the genus Deltavirus unassigned to any virus family. HDV is a satellite virus and needs hepatitis B virus (HBV) to make infectious particles. Deltaviruses are thought to have evolved in humans, since for a long time, they had not been identified elsewhere. Herein we report, prompted by the recent discovery of an HDV-like agent in birds, the identification of a deltavirus in snakes (Boa constrictor) designated snake HDV (sHDV). The circular 1,711-nt RNA genome of sHDV resembles human HDV (hHDV) in its coding strategy and size. We discovered sHDV during a metatranscriptomic study of brain samples of a Boa constrictor breeding pair with central nervous system signs. Applying next-generation sequencing (NGS) to brain, blood, and liver samples from both snakes, we did not find reads matching hepadnaviruses. Sequence comparison showed the snake delta antigen (sHDAg) to be 55% and 37% identical to its human and avian counterparts. Antiserum raised against recombinant sHDAg was used in immunohistology and demonstrated a broad viral target cell spectrum, including neurons, epithelial cells, and leukocytes. Using RT-PCR, we also detected sHDV RNA in two juvenile offspring and in a water python (Liasis macklotisavuensis) in the same snake colony, potentially indicating vertical and horizontal transmission. Screening of 20 randomly selected boas from another breeder by RT-PCR revealed sHDV infection in three additional snakes. The observed broad tissue tropism and the failure to detect accompanying hepadnavirus suggest that sHDV could be a satellite virus of a currently unknown enveloped virus.IMPORTANCE So far, the only known example of deltaviruses is the hepatitis delta virus (HDV). HDV is speculated to have evolved in humans, since deltaviruses were until very recently found only in humans. Using a metatranscriptomic sequencing approach, we found a circular RNA, which resembles that of HDV in size and coding strategy, in a snake. The identification of similar deltaviruses in distantly related species other than humans indicates that the previously suggested hypotheses on the origins of deltaviruses need to be updated. It is still possible that the ancestor of deltaviruses emerged from cellular RNAs; however, it likely would have happened much earlier in evolution than previously thought. These findings open up completely new avenues in evolution and pathogenesis studies of deltaviruses.


Assuntos
Boidae/virologia , Hepatite D/veterinária , Vírus Delta da Hepatite/classificação , Vírus Delta da Hepatite/isolamento & purificação , Estruturas Animais/virologia , Animais , Encéfalo/virologia , Transmissão de Doença Infecciosa , Perfilação da Expressão Gênica , Ordem dos Genes , Hepatite D/transmissão , Hepatite D/virologia , Vírus Delta da Hepatite/genética , Sequenciamento de Nucleotídeos em Larga Escala , Imuno-Histoquímica , Filogenia , RNA/genética , RNA Circular , RNA Viral/genética , Homologia de Sequência , Tropismo Viral
12.
PLoS Pathog ; 14(11): e1007415, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30427944

RESUMO

The family Arenaviridae comprises three genera, Mammarenavirus, Reptarenavirus and the most recently added Hartmanivirus. Arenaviruses have a bisegmented genome with ambisense coding strategy. For mammarenaviruses and reptarenaviruses the L segment encodes the Z protein (ZP) and the RNA-dependent RNA polymerase, and the S segment encodes the glycoprotein precursor and the nucleoprotein. Herein we report the full length genome and characterization of Haartman Institute snake virus-1 (HISV-1), the putative type species of hartmaniviruses. The L segment of HISV-1 lacks an open-reading frame for ZP, and our analysis of purified HISV-1 particles by SDS-PAGE and electron microscopy further support the lack of ZP. Since we originally identified HISV-1 in co-infection with a reptarenavirus, one could hypothesize that co-infecting reptarenavirus provides the ZP to complement HISV-1. However, we observed that co-infection does not markedly affect the amount of hartmanivirus or reptarenavirus RNA released from infected cells in vitro, indicating that HISV-1 does not benefit from reptarenavirus ZP. Furthermore, we succeeded in generating a pure HISV-1 isolate showing the virus to replicate without ZP. Immunofluorescence and ultrastructural studies demonstrate that, unlike reptarenaviruses, HISV-1 does not produce the intracellular inclusion bodies typical for the reptarenavirus-induced boid inclusion body disease (BIBD). While we observed HISV-1 to be slightly cytopathic for cultured boid cells, the histological and immunohistological investigation of HISV-positive snakes showed no evidence of a pathological effect. The histological analyses also revealed that hartmaniviruses, unlike reptarenaviruses, have a limited tissue tropism. By nucleic acid sequencing, de novo genome assembly, and phylogenetic analyses we identified additional four hartmanivirus species. Finally, we screened 71 individuals from a collection of snakes with BIBD by RT-PCR and found 44 to carry hartmaniviruses. These findings suggest that harmaniviruses are common in captive snake populations, but their relevance and pathogenic potential needs yet to be revealed.


Assuntos
Arenavirus/classificação , Arenavirus/genética , Animais , Arenaviridae/genética , Infecções por Arenaviridae/virologia , Sequência de Bases , Boidae/virologia , Linhagem Celular , Corpos de Inclusão Viral/patologia , Filogenia , RNA Viral/genética , RNA Polimerase Dependente de RNA/genética , Proteínas Virais/genética
13.
PLoS One ; 11(7): e0159016, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27399970

RESUMO

Here, we report the results of a large-scale PCR survey on the prevalence and diversity of adenoviruses (AdVs) in samples collected randomly from free-living reptiles. On the territories of the Guadarrama Mountains National Park in Central Spain and of the Chafarinas Islands in North Africa, cloacal swabs were taken from 318 specimens of eight native species representing five squamate reptilian families. The healthy-looking animals had been captured temporarily for physiological and ethological examinations, after which they were released. We found 22 AdV-positive samples in representatives of three species, all from Central Spain. Sequence analysis of the PCR products revealed the existence of three hitherto unknown AdVs in 11 Carpetane rock lizards (Iberolacerta cyreni), nine Iberian worm lizards (Blanus cinereus), and two Iberian green lizards (Lacerta schreiberi), respectively. Phylogeny inference showed every novel putative virus to be a member of the genus Atadenovirus. This is the very first description of the occurrence of AdVs in amphisbaenian and lacertid hosts. Unlike all squamate atadenoviruses examined previously, two of the novel putative AdVs had A+T rich DNA, a feature generally deemed to mirror previous host switch events. Our results shed new light on the diversity and evolution of atadenoviruses.


Assuntos
Adenoviridae/isolamento & purificação , Adenoviridae/fisiologia , Conservação dos Recursos Naturais , Répteis/virologia , Adenoviridae/genética , Sequência de Aminoácidos , Animais , Filogenia , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...